Ela Spectrum of Infinite Block Matrices

نویسنده

  • MICHAEL GIL
چکیده

The paper deals with infinite block matrices having compact off diagonal parts. Bounds for the spectrum are established and estimates for the norm of the resolvent are proposed. Applications to matrix integral operators are also discussed. The main tool is the π-triangular operators defined in the paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectrum of infinite block matrices and pi-triangular operators

The paper deals with infinite block matrices having compact off diagonal parts. Bounds for the spectrum are established and estimates for the norm of the resolvent are proposed. Applications to matrix integral operators are also discussed. The main tool is the π-triangular operators defined in the paper.

متن کامل

Ela the Eigenvalue Distribution of Block Diagonally Dominant Matrices and Block H−matrices

The paper studies the eigenvalue distribution of some special matrices, including block diagonally dominant matrices and block H−matrices. A well-known theorem of Taussky on the eigenvalue distribution is extended to such matrices. Conditions on a block matrix are also given so that it has certain numbers of eigenvalues with positive and negative real parts.

متن کامل

Ela Bounds for the Spectral Radius of Block H-matrices∗

Simple upper bounds for the spectral radius of an H-matrix and a block H-matrix are presented. They represent an improvement over the bounds in [T.Z. Huang, R.S. Ran, A simple estimation for the spectral radius of (block) H-matrices, Journal of Computational Applied Mathematics, 177 (2005), pp. 455–459].

متن کامل

Ela Determinants of Multidiagonal Matrices

Abstract. The formulas presented in [Molinari, L.G. Determinants of block tridiagonal matrices. Linear Algebra Appl., 2008; 429, 2221–2226] for evaluating the determinant of block tridiagonal matrices with (or without) corners are used to derive the determinant of any multidiagonal matrices with (or without) corners with some specified non-zero minors. Algorithms for calculation the determinant...

متن کامل

Ela How to Establish Universal Block - Matrix Factorizations ∗

A general method is presented for establishing universal factorization equalities for 2×2 and 4×4 block matrices. As applications, some universal factorization equalities for matrices over four-dimensional algebras are established, in particular, over the Hamiltonian quaternion algebra.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007